
A distributed multi-purpose IP flow monitor

Claudio Mazzariello, Francesco Oliviero
Dipartimento di Informatica e Sistemistica — Università degli Studi di Napoli “Federico II”

Via Claudio 21, 80125, Napoli, Italy
E-mail: {cmazzari,folivier }@unina.it

Salvatore D’Antonio, Dario Salvi
Lab. ITeM - Consorzio Interuniversitario Nazionale per l’Informatica - CINI

Via Diocleziano 328, 80124, Napoli, Italy
E-mail: {salvatore.dantonio,dsalvi }@napoli.consorzio-cini.it

Abstract

Traffic monitoring is a research field whose results can
be exploited for several purposes, such as network resource
management, security and accounting. An effective mon-
itor needs to be capable of analyzing the traffic flowing
through the monitored network by losing as few packets
as possible since packet loss may result in a non accurate
measurement of the required metrics. Such a monitor cap-
tures the packets from the network, associates each packet
to a flow by evaluating its characteristics, performs some
flow measurements, and exports the results of data analy-
sis. In high speed networks such tasks might be hard to
accomplish in an efficient way, as the number of analyzed
flows is very high. For this reason, we decided to design
and implement a distributed monitoring system comprising
several components each responsible for a different task.
Such a distributed approach helps overcome the problem
of an overloaded monitoring system. Furthermore, distrib-
uted systems need an appropriate protocol, that defines the
kind as well as the sequence of messages exchanged be-
tween system components. In this paper we present both
the monitoring architecture and the corresponding man-
agement protocol. Finally, in order for the monitoring sys-
tem to support different kinds of applications, we developed
an open framework allowing a user to define a customized
set of metrics.

Keywords: traffic measurements, IP flow monitoring,
Last Recently Used caching, traffic profiling, intrusion de-
tection

1 Introduction

This paper aims to introduce a distributed, highly con-
figurable, multipurpose architecture for IP flow monitoring.
An IP flow is defined as a sequence of packets sharing some
properties characterising the packet headers. A large num-
ber of applications benefit from the availability of accurate
information about traffic flows.

One first example istraffic profiling, which consists of
the development of analytical models used to predict the
traffic behavior.

The traffic profiling activity cannot be separated from
traffic measurement due to the fact that any modeling re-
quires the measurement of some metrics both as input to
the model and for the validation of the model itself. The
modeling done at the IP flow level is a recent, challenging
issue [Claffy et al., 1995].

A further example of application relying on measure-
ments is theintrusion detectionin IP networks. An in-
trusion detection system can be made of two modules: a
monitoring system that measures a set of metrics related
to the observed flows, and a detection engine that analyzes
the metrics in order to detect a ”malicious” behavior. A
large number of intrusion detection systems are based on
the analysis of packet-level or TCP-connection-level data
[Bace, 2000]. Recently a new IP flow level analysis has
been introduced in order to detect malicious network activ-
ities [Barford and Plonka, 2001].

Therefore, different applications rely on the measure-
ment process. Unfortunately different applications use dif-
ferent kinds of metrics; for example both cited applications
need the definition as well as the computation of specific
metrics. For this reason we propose an open architecture
allowing to implement a set of algorithms to calculate met-
rics by means of an application program interface (API).



Another challenging task is the development of a sys-
tem for flow monitoring in high speed networks. Due to
the high throughput characterizing such networks, a first re-
quirement is imposed to the monitoring system: data have
to be quickly and effectively collected in order to operate in
scenarios with a large number of simultaneous flows (up to
millions on a OC192 link) and a short packet inter arrival
time (few nanoseconds on a OC192 link). If the measuring
system is not able to manage a large number of flows or
short inter arrival times, a loss of flow data or packets may
occur. In both cases the applications miss vital information.
For this reason we developed a distributed architecture that
can measure a large number of flows during relatively short
times.

Following an analysis of related work in 2, in section
3 we describe the architecture of our monitoring system.
In order to develop a reliable and robust system, we have
defined a proper protocol to manage the communication
among the different modules of the distributed architecture.
The protocol definition is in section 4. In section 5 we dis-
cuss some scalability issues. Finally the section 6 provides
some concluding remarks, together with information con-
cerning our future work.

2 Related Work

There is a rich literature about flow monitoring. Here we
want to focus on the most recently proposed architectures,
in particular those presenting some level of distribution.

One important architecture has been developed by the
IETF RTFM working group (Real Time Traffic Flow Mea-
surement) [Brownlee et al., 1997]. The architecture is
composed of the following modules:

1. A managerwhich configures and controls the other
two modules on the basis of the requirements.

2. A meter, which is the core module of the system. It
analyzes the traffic passing through one or more net-
work interfaces and aggregates it in flows.

3. A meter readerwhich collects the data read by the
meter and sends it to the applications.

Another interesting IETF working group is IPFIX (IP
Flow Information eXport) [Sadasivan et al., 2005]. This
group was born in 2003 and its goal is to define a com-
mon architecture and protocol to let different monitoring
applications communicate to each other. The proposed ar-
chitecture consists of two modules: theIPFIX deviceand
thecollector.

The IPFIX device captures packets and measures the
flow data. It is made of four components:

1. Theobservation domainwhich is a set of points of
observation. A point of observation is a location on
the network where it is possible to observe IP packets.

2. Themetering processis the unit which captures pack-
ets from an observation point and generates theflow
records, a data structure where all the statistics related
to the flow are stored. Each observation point must be
associated to, at least, one metering process. The me-
tering process must be able to capture packets, sample
packets, generate the flow key for each packet, update
the flow records.

3. Theflow recording processstores all the flow records
sent by one or more metering processes. Its task is to
keep in memory all the flow records related to active
flows, i.e. flows which are still sending packets.

4. Theexporting processmust send all the measured data
to the collector. The used protocol is defined by the
working group.

The collector is the module which collects all the infor-
mation sent by the exporting processes, stores the data, and
sends it to the applications.

Finally, we cite three works where real time flow mea-
surement is done by means of a distributed tool.

In [Mao et al., 2001] the authors present a distributed
real time system for web traffic analysis. The architecture
comprises three modules:

1. A network dispatcherwhich dispatches the captured
packets among multiple analysis nodes. The main task
of this module is to split the set of traffic flows in sub-
sets in order that they are approximatively the same
average load for the analysis node.

2. An analysis nodewhich performs the traffic analysis.
In this paper measurements concern web traffic, but
the architecture could be generalized with little modi-
fications.

3. A storage centerwhich collects all the measured data
sent by the analysis nodes.

In [Kitatsuji and Yamazaki, 2004] the authors propose a
distributed tool for IP flow measurement based on a gen-
eral definition of flow. The framework is composed of the
following entities:

1. A distribution devicewhich forwards packets to mul-
tiple capturing devices.

2. A capturing devicewhich identifies packets that corre-
spond to flow definitions and computes statistics. Sta-
tistics are periodically sent to a manager device which
returns flow definition updates.



3. A manager devicewhich stores data received from
multiple capturing devices, obtains flow definitions
from the user interface devices and sends them to the
capturing devices.

4. A user interface devicewhich provides users with an
interface.

In [Han et al., 2002] the authors present a monitoring
system1 for flow based analysis in high speed networks.
The architecture is made of five, fully distributed, modules:

1. A splitting devicewhich sends the packets to the
packet capturer.

2. A packet capturerwhich captures the packets sent by
the splitting device, maintains the minimum header
information for each packet, adds a time stamp, and
sends the data to the next module.

3. A flow generatorwhich stores the flow data in its
memory for processing it. Data related to each ex-
pired flow is then exported to the next module.

4. A flow storeis a database where all the recent data
is stored. Since many queries, insertions from flow
generators and selections from the next modules can
be executed, it is implemented as a distributed system
as well. All the read data is discarded in order to store
only a minimum amount of data.

5. A traffic analyzerwhich makes queries on the stored
data according to the analysis purpose.

With respect to the cited architectures, we can remark
that they do not allow to define metrics in a flexible way.
Since different applications could be interested in differ-
ent metrics, enabling the metric customization represents
a valuable functionality. This is one of the main contribu-
tions of our work.

3 The monitoring architecture

The system we want to present is in charge of capturing
packets from the network, associating them to a flow, by
the means of a customizable flow definition, and updating
a record containing flow-related metrics. Measured data
is, therefore, collected in order to make it available to the
applications. The system architecture comprises a module
that stores all the flow records related toliving flows, where
a living flow is a flow which is still receiving packets before
a timeout occurs. The main issue concerning this task is
represented by the fact that the number of living flows is
very high (up to millions) and the packet inter-arrival time
is very short on high speed links. This implies that the

1http://ngmon.postech.ac.kr/NG-MON/

time interval spent to search for the record associated with
a captured packet can be longer than the packet inter arrival
time, in case of a huge number of flow records. For this
reason we decided to adopt a distributed approach making
it possible to divide the task of keeping the records related
to the living flows among multiple processes. The proposed
architecture is made of the following modules:

1. Meter, which captures the packets from a network in-
terface, or equivalently from a trace file, associates
them to a flow identification number, the so-called
flow id, and passes them to next component.

2. Flow Cache, which stores the metrics related to the
living flows observed and updates the records. This
is the most challenging component as it has to search
and update the metrics within the inter arrival time.
For this reason we decided to introduce more flow
caches and implement each of them as a separate
process. Flow records are associated to them on the
basis of their flow id. The flow cache is also responsi-
ble for exportingall the information related to timed-
out flows to a further component, i.e. the collector.

3. Collector, which collects the metrics related to the
flows observed by all the flow caches. The collected
data can be used by different applications such as traf-
fic profiling, intrusion detection, billing, etc.

Figure 1. Architecture

Furthermore, valuable capabilities, such as on-line
packet sniffing and filtering, packet analysis based on a
trace file, customizable definition of a flow via a scripting



language, and customizable definition of a metric via an
API are provided.

A partially implemented version of the soft-
ware is available on the SourceForge site at
http://sourceforge.net/projects/difmon/.

3.1 Meter

The Meter performs the following tasks:

1. capturing packets from the network interface or from
a trace file

2. associating a flow id to every packet

3. providing a time stamp in order to keep track of when
the packet was captured

4. identifying, by means of the flow id, the flow cache
which is related to the flow

5. sending the packet (together with its flow id and time
stamp) to the selected flow cache

The flow id computation relies on a set of rules defined
by the user by means of a standard language. Such lan-
guage supports the flow definition according to the contents
of the packet headers from the IP level to the application
one.

The selection of the flow cache is done by means of a
hash function applied to the flow id. The chosen function
is the mmh which is fast enough and has good stochastic
properties that enable the uniform distribution of the flow
records among the various flow caches.

3.2 Flow Cache

The flow cache keeps track of living flows in order for
metrics to be updated in real time. It receives the captured
packet and the related flow id from the meter and, then,
establishes whether a corresponding flow record already
exists. If so, the flow cache updates the related metrics,
otherwise a new flow record is created.

Based on the assumption that the user should be able to
define specific metrics, an API is provided. This makes the
system very flexible and capable to support different kinds
of applications.

Moreover, the flow cache periodically sends the data re-
lated to the no-more-living flows to the collector. The def-
inition of a living flow can be based on the introduction of
a timeout or on the analisys of TCP sessions.

Some real-time applications, such as intrusion detection,
may require the exporting of some still-living flows. In
this case the flow cache selects living flows to be exported
through a heuristic function.

The main challenge is the development of a fast and ef-
fective flow cache. In particular it is necessary to imple-
ment a suitable data structure and ordering mechanism to
maintain information about living flows. We intend to ap-
ply an LRU (Least Recently Used) ordering as it is the main
solution used in caching algorithms. This ordering algo-
rithm allows addressing two issues: it provides a fast way
to detect timed out flows as well as a good heuristic to se-
lect the so-calledheavy hittersflows, where a heavy hitter
flow is a high rate flow.

In fact, by scanning the LRU queue from the tail and
by checking for each record whether the difference be-
tween the record’s last update time and the current time
exceeds the timeout, it is possible to find every timed-out
flows. Therefore, if the search for heavy hitters flows is al-
ways done by scanning the LRU list from its head, one will
step into heavy hitters flows with high probability. The ex-
porting process can take advantage of this ordering mecha-
nism simply exporting the first N records of the flow cache
queue.

3.3 Collector

The collector is the module responsible for collecting
the metrics of all the observed flows and sending them to
the running applications. In case it receives flow records re-
lated to the no-more-living flows from the flow caches, then
such records are both stored into a file and sent to the appli-
cations. In case the collector receives living flows, it passes
them directly to the applications performing real time op-
erations. As the flow cache, the collector provides an API.

4 The management protocol

In this section we present the protocol for managing in-
teractions among the monitoring system components. The
aim is to make the system robust, flexible and tolerant to
every kind of faults and errors. To this purpose, when de-
signing such a protocol we made the following assump-
tions:

1. the system modules run on hosts belonging to a dedi-
cated network separated from the network to be mon-
itored. This is for two reasons: first, the traffic gener-
ated by the monitoring system must not affect the be-
havior of the monitored traffic. Second, the network
connecting system components should be faster than
the monitored network as it has to re-transmit every
captured packet plus some further information.

2. The modules may run on different machines as well
as two or more modules may run on a same machine.

3. The meter is fast enough to perform packet capturing
and classification within the mean packet inter arrival



time. Both the meter and the collector have to be prop-
erly designed and implemented since their behavior
largely affects system performance.

4. Both the meter and the collector use well defined port
numbers to send or receive signaling messages, while
data transfers between system modules happen by us-
ing port numbers dinamically chosen.

In next subsections we will illustrate some use cases
concerning the operation of the monitoring system.

4.1 Start And Stop

Starting the system:
We start the system by launching the meter and the col-

lector. After that, at least one flow cache is launched.
The flow cache establishes a connection with both the

meter and the collector. More precisely, the flow cache
asks the meter to set up a connection, the meter answers
and then waits for an ACK from the flow cache on the just
established connection. Afterward, the flow cache sends a
connection request to the collector, the collector replies and
waits for an ACK. Finally, the flow cache sends the ACK
packet to both the meter and the collector.

Figure 2. Start of the system

Stopping the system:
The system can be stopped by the collector (as a con-

sequence of an application’s request) or by the meter (e.g.
when the trace file ends).

In the first case the collector sends an END packet to
the meter which forwards it to the flow caches and waits
for an ACK. As soon as the flow caches receive the END
packet, they export all the stored data and then send the
END packet to the collector and wait for an ACK. Once
the collector has received the END packet from all the flow
caches, it sends the ACKs to the flow caches and stops. The
flow caches, in turn, send the ACK packet to the meter and
stop. Finally, the meter stops as soon as it receives the ACK
packet from all the flow caches.

In the second case the sequence of messages is the same
as above except for the source of the end request.

Figure 3. Stop of the system

4.2 Steady-state behavior of the protocol

Once the handshaking has ended, it is possible to define
two different communication protocols between the mod-
ules.

Interaction between the meter and the flow cache:
The meter sends bulks of captured packets together

with associated flow identifiers and timestamps to the flow
caches. A flow control mechanism is used to manage the
interaction between the meter and the flow cache. Flow
control is especially useful in case packet information is
retrieved from a trace file since reading from a trace file is
faster than capturing packets from network.

Interaction between the flow cache and the collector:
Flow caches send bulks of measured data to the collector

and wait for an ACK.

Figure 4. Steady state

4.3 Management of metrics

The metrics should be defined on the collector side,
which is the only module communicating with the appli-
cations. When a flow cache sends a connection request to
the collector, it replies by attaching the list of metrics to the
answer.



4.4 System abort

Problems concerning one of the modules can jeopardize
the operation of the whole system. In this case an ABORT
message is introduced in order to stop all the modules.
Three kinds of events should be considered:

1. A flow cache falls into an error.

In this case the flow cache sends an ABORT message
to both the meter and the collector and then stops. The
meter and the collector forward the message to all the
flow caches and each other and then will stop. The
flow caches try to forward the message to both the me-
ter and the collector and stop.

Figure 5. Abort from flow cache

2. The meter falls into an error.

The meter sends the ABORT message to the collec-
tor and all the flow caches and, then, stops. The flow
caches forward the message to both the collector and
the meter and stop. The collector tries to forward the
message to the meter and to all the flow caches and,
then, stops.

3. The collector falls into an error.

After sending an ABORT to the meter and to all the
flow caches, the collector stops. The meter forwards
the message to all the flow caches and to the collector
and, then, stops. The flow caches try to forward the
message to both the collector and the meter and stop.

The aborting algorithm is very simple. Once an ABORT
message is received by a system module, such a message
is forwarded to all the connected modules. This algorithm
is not efficient as it causes a flooding of abort messages.
However, since the system abort is a rare event, the pro-
posed algorithm represents a suitable solution thanks to its
simplicity and timeliness.

Figure 6. Abort from meter

Figure 7. Abort from collector

4.5 Adding a flow cache

We want the flow caches to be able to dynamically con-
nect and disconnect from the system, at any time during the
operation.

When a flow cache starts it sends a connection request
to the meter. The meter answers creating a connection and
waits for an ACK. The flow cache, then, sends a connec-
tion request to the collector, the collector answers with the
metrics list and waits for an ACK. At this point, the flow
cache sends the ACKs to both the meter and the collector
establishing the communication with them.

4.6 Deleting a flow cache

In some cases (e.g. when an error happens at flow cache
side or some communication problems occur) it is useful to
disconnect a flow cache from the system.



Figure 8. Adding a flow cache

When a flow cache wants to disconnect from other mod-
ules it sends a disconnection request to the meter. The me-
ter then sends an ACK and closes the connection with that
flow cache. The flow cache then performs the last exporting
operation and sends a disconnection request to the collec-
tor. The collector sends an ACK and closes the connection,
the flow cache can now stop.

Figure 9. Deleting a flow cache

4.7 Crash of a module

1. Meter’s crash:

If the meter suddenly stops, the flow caches will get
aware of this by observing that they are not receiv-
ing any more data. If the network is down, the meter
does not send any data although it is active. Thus, it
is necessary that the flow caches send a message to
the meter to verify whether it is alive. If no data is
seen at the flow cache side before a timeout occurs,
the flow caches send an ALIVE request to the meter
which should answer by sending an ACK to all the
flow caches. If no answer is received before a timeout
occurs, the flow caches abort the system.

2. Flow cache’s crash

If a flow cache crashes, both the meter and the col-
lector can get aware of it by observing that no more
data are sent from the flow cache. The meter will
not receive any ACK, so it will assume that the flow

Figure 10. Meter’s crash

cache has crashed, and will disconnect it. The col-
lector will not receive any more exporting data and,
therefore, it will send an ALIVE message in order to
verify whether the flow cache is still active. If the
flow cache does not answer, the collector will close
the connection with it.

3. Collector’s crash

If the collector crashes, the flow cache will get aware
of such event by observing that no ACK is received
and will abort the entire system.

Figure 11. Collector’s crash

4.8 A critical case

Let us analyze the case when a flow cache is discon-
nected from the meter, while keeping on being active.

It is possible that an over-loaded flow cache is not able
to send the ACK packets to the meter before the timeout
occurs. In this case the meter will suppose that the flow
cache has crashed although it is still active. Consequently,
when the flow cache ends its computations it will find itself
disconnected from the meter and will send a message ask-
ing if the meter is still alive. The meter will not answer and
the flow cache will assume the meter is dead and will abort
the system.

It is possible to avoid this situation by observing that
the flow cache which is no more connected to the meter,
before sending the ALIVE request, has just sent an ACK.



In this case the flow cache should not abort the system if it
does not receive any ACK from the meter, but should just
disconnect from the collector and exit.

The opposite situation, where the flow cache is discon-
nected from the collector but still connected to the meter,
should never happen because the timeout used by the col-
lector to verify the flow cache’s activity should be much
longer than the meter’s one. Under this hypothesis the flow
cache can be disconnected from both the meter and the col-
lector, or only from the meter.

5 Scalability Issues

We would like to discuss here about some scalability is-
sues related to the system we have just described. There are
two main problems related to the scalability, one is related
to the number of flow caches, the other is related to number
of sniffed networks:

5.1 Increasing the number of flow caches

What happens if the number of flow caches increases ?
The main idea of this project is to implement a distrib-
uted flow cache. We have already illustrated the reasons
that make the approach effective: increasing the number
of flow caches helps to distribute the memory and compu-
tation load necessary during the packet inter arrival time.
On the other hand, increasing the number of flow caches
might represent an overload in the communication process
between the meter and flow caches: new flow caches can
generate new messages for the meter or the collector. From
a deep analysis it is possible to observe that the sent mes-
sages do not increase as the number of flow caches varies.
In fact, on the meter side, if we have one flow cache we
expect one ACK message every N captured packets, but if
we have M flow caches we expect M ACK messages every
NxM captured packets (which means one ACK every N
packets), and the number of captured packets does not de-
pend on the number of the flow caches. Similarly, on the
collector side, if we have only one flow cache, we expect
one ACK message every N exported flows, while if we have
M flow caches we expect M ACK messages every NxM
exported flows, and the number of exported flows does not
depend on the number of flow caches.

Moreover, it should be noted that there is a small traffic
increase during the initial handshaking, because each flow
cache has to send and receive the start messages sequence
independently. This is the only difference in the network
load caused by the increase in the number of flow caches.

5.2 Increasing the number of monitored net-
works

In this paper we have supposed that the meter captures
the packets only from a single interface; but what happens
if we want the meter to capture the packets from more than
one interface?

Two approaches are possible: we can use only one meter
to capture the packets from different network cards, or we
can use more meters, each one capturing from only one
interface.

In the first case we may face some scalability problems
related to the fact that increasing the number of network
interfaces the average packet inter arrival time decreases,
overloading the meter. In this situation the meter could not
be able to terminate per-packet computation before a next
packet arrives, so it will lose packets.

In the second case we override scalability problems on
the meter but we should allow the flow caches to connect
to every active meter, needing some slight changes in the
protocol.

6 Conclusions and Future Work

After analyzing functionalities provided by similar ar-
chitectures, we have designed and implemented a scalable,
distributed, multipurpose, reliable system for flow-based
measurements. Capturing traffic from high speed networks
is a challenging task due to short packet inter arrival times
and huge number of concurrent flows; for this reason we
propose a distributed architecture in order to achieve high
performance when keeping in memory statistics related to
active flows. In order to make the system reliable and ro-
bust, we defined an appropriate protocol managing the in-
teractions between the system components. A further con-
tribution illustrated in the paper is the implementation of
an API aiming to allow users to define metrics to be mea-
sured on the flows. Such a feature is very attractive as it
makes the system suitable to different contexts, such as se-
curity, traffic profiling or billing where specific metrics are
of interest.

As for future work, in order to assess the feasibility of
the proposed architecture a trail activity, including bench-
marking and robustness evaluation, will be conducted; fur-
thermore the LRU sorting algorithm will be compared with
other ordering algorithms.

Finally, we are currently working on the implementation
of an intrusion detection system and a tool for traffic profil-
ing based on the proposed monitoring architecture with the
aim of demonstrating the polyhedric nature of our frame-
work.



References

[Bace, 2000] Bace, R. G. (2000).Intrusion Detection.
Macmillan Technical Publishing.

[Barford and Plonka, 2001] Barford, P. and Plonka, D.
(2001). Characteristics of network traffic flow anom-
alies.

[Brownlee et al., 1997] Brownlee, N., Mills, C., and Ruth,
G. (1997). Rfc 2063 traffic flow measurement: Archi-
tecture.

[Claffy et al., 1995] Claffy, K. C., Braun, H.-W., and Poly-
zos, G. C. (1995). A parameterizable methodology for
internet traffic flow profiling.IEEE Journal of Selected
Areas in Communications, 13(8):1481–1494.

[Han et al., 2002] Han, S.-H., Kim, M.-S., Ju, H.-T., and
Hong, J. W.-K. (2002). The architecture of ng-mon:
A passive network monitoring system for high-speed
ip networks. Proceedings of the 13th IFIP/IEEE In-
ternational Workshop on Distributed Systems, 2506 /
2002:16–27.

[Kitatsuji and Yamazaki, 2004] Kitatsuji, Y. and Ya-
mazaki, K. (2004). A distributed real-time tool
for ip-flow measurement. Proceedings of the 2004
International Symposium on Applications and the
Internet.

[Mao et al., 2001] Mao, Y., Chen, K., Wang, D., and
Zheng, W. (2001). Cluster-based online monitoring sys-
tem of web traffic.Proceedings of the 3rd international
workshop on Web information and data management.

[Sadasivan et al., 2005] Sadasivan, G., Brownlee, N.,
Claise, B., and Quittek, J. (2005). Ipfix working group
internet draft, architecture model for ip flow information
export.


